Together AI
LiteLLM supports all models on Together AI.
API Keys
import os
os.environ["TOGETHERAI_API_KEY"] = "your-api-key"
Sample Usage
from litellm import completion
os.environ["TOGETHERAI_API_KEY"] = "your-api-key"
messages = [{"role": "user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/togethercomputer/Llama-2-7B-32K-Instruct", messages=messages)
Together AI Models
liteLLM supports non-streaming
and streaming
requests to all models on https://api.together.xyz/
Example TogetherAI Usage - Note: liteLLM supports all models deployed on TogetherAI
Llama LLMs - Chat
Model Name | Function Call | Required OS Variables |
---|---|---|
togethercomputer/llama-2-70b-chat | completion('together_ai/togethercomputer/llama-2-70b-chat', messages) | os.environ['TOGETHERAI_API_KEY'] |
Llama LLMs - Language / Instruct
Model Name | Function Call | Required OS Variables |
---|---|---|
togethercomputer/llama-2-70b | completion('together_ai/togethercomputer/llama-2-70b', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/LLaMA-2-7B-32K | completion('together_ai/togethercomputer/LLaMA-2-7B-32K', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/Llama-2-7B-32K-Instruct | completion('together_ai/togethercomputer/Llama-2-7B-32K-Instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/llama-2-7b | completion('together_ai/togethercomputer/llama-2-7b', messages) | os.environ['TOGETHERAI_API_KEY'] |
Falcon LLMs
Model Name | Function Call | Required OS Variables |
---|---|---|
togethercomputer/falcon-40b-instruct | completion('together_ai/togethercomputer/falcon-40b-instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/falcon-7b-instruct | completion('together_ai/togethercomputer/falcon-7b-instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
Alpaca LLMs
Model Name | Function Call | Required OS Variables |
---|---|---|
togethercomputer/alpaca-7b | completion('together_ai/togethercomputer/alpaca-7b', messages) | os.environ['TOGETHERAI_API_KEY'] |
Other Chat LLMs
Model Name | Function Call | Required OS Variables |
---|---|---|
HuggingFaceH4/starchat-alpha | completion('together_ai/HuggingFaceH4/starchat-alpha', messages) | os.environ['TOGETHERAI_API_KEY'] |
Code LLMs
Model Name | Function Call | Required OS Variables |
---|---|---|
togethercomputer/CodeLlama-34b | completion('together_ai/togethercomputer/CodeLlama-34b', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/CodeLlama-34b-Instruct | completion('together_ai/togethercomputer/CodeLlama-34b-Instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/CodeLlama-34b-Python | completion('together_ai/togethercomputer/CodeLlama-34b-Python', messages) | os.environ['TOGETHERAI_API_KEY'] |
defog/sqlcoder | completion('together_ai/defog/sqlcoder', messages) | os.environ['TOGETHERAI_API_KEY'] |
NumbersStation/nsql-llama-2-7B | completion('together_ai/NumbersStation/nsql-llama-2-7B', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardCoder-15B-V1.0 | completion('together_ai/WizardLM/WizardCoder-15B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardCoder-Python-34B-V1.0 | completion('together_ai/WizardLM/WizardCoder-Python-34B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
Language LLMs
Model Name | Function Call | Required OS Variables |
---|---|---|
NousResearch/Nous-Hermes-Llama2-13b | completion('together_ai/NousResearch/Nous-Hermes-Llama2-13b', messages) | os.environ['TOGETHERAI_API_KEY'] |
Austism/chronos-hermes-13b | completion('together_ai/Austism/chronos-hermes-13b', messages) | os.environ['TOGETHERAI_API_KEY'] |
upstage/SOLAR-0-70b-16bit | completion('together_ai/upstage/SOLAR-0-70b-16bit', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardLM-70B-V1.0 | completion('together_ai/WizardLM/WizardLM-70B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
Prompt Templates
Using a chat model on Together AI with it's own prompt format?
Using Llama2 Instruct models
If you're using Together AI's Llama2 variants( model=togethercomputer/llama-2..-instruct
), LiteLLM can automatically translate between the OpenAI prompt format and the TogetherAI Llama2 one ([INST]..[/INST]
).
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
messages = [{"role": "user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/togethercomputer/Llama-2-7B-32K-Instruct", messages=messages)
Using another model
You can create a custom prompt template on LiteLLM (and we welcome PRs to add them to the main repo 🤗)
Let's make one for OpenAssistant/llama2-70b-oasst-sft-v10
!
The accepted template format is: Reference
"""
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
"""
Let's register our custom prompt template: Implementation Code
import litellm
litellm.register_prompt_template(
model="OpenAssistant/llama2-70b-oasst-sft-v10",
roles={
"system": {
"pre_message": "[<|im_start|>system",
"post_message": "\n"
},
"user": {
"pre_message": "<|im_start|>user",
"post_message": "\n"
},
"assistant": {
"pre_message": "<|im_start|>assistant",
"post_message": "\n"
}
}
)
Let's use it!
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
messages=[{"role":"user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=messages)
Complete Code
import litellm
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
litellm.register_prompt_template(
model="OpenAssistant/llama2-70b-oasst-sft-v10",
roles={
"system": {
"pre_message": "[<|im_start|>system",
"post_message": "\n"
},
"user": {
"pre_message": "<|im_start|>user",
"post_message": "\n"
},
"assistant": {
"pre_message": "<|im_start|>assistant",
"post_message": "\n"
}
}
)
messages=[{"role":"user", "content": "Write me a poem about the blue sky"}]
response = completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=messages)
print(response)
Output
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": ".\n\nThe sky is a canvas of blue,\nWith clouds that drift and move,",
"role": "assistant",
"logprobs": null
}
}
],
"created": 1693941410.482018,
"model": "OpenAssistant/llama2-70b-oasst-sft-v10",
"usage": {
"prompt_tokens": 7,
"completion_tokens": 16,
"total_tokens": 23
},
"litellm_call_id": "f21315db-afd6-4c1e-b43a-0b5682de4b06"
}
Rerank
Usage
- LiteLLM SDK Usage
- LiteLLM Proxy Usage
from litellm import rerank
import os
os.environ["TOGETHERAI_API_KEY"] = "sk-.."
query = "What is the capital of the United States?"
documents = [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country.",
]
response = rerank(
model="together_ai/rerank-english-v3.0",
query=query,
documents=documents,
top_n=3,
)
print(response)
LiteLLM provides an cohere api compatible /rerank
endpoint for Rerank calls.
Setup
Add this to your litellm proxy config.yaml
model_list:
- model_name: Salesforce/Llama-Rank-V1
litellm_params:
model: together_ai/Salesforce/Llama-Rank-V1
api_key: os.environ/TOGETHERAI_API_KEY
Start litellm
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
Test request
curl http://0.0.0.0:4000/rerank \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "Salesforce/Llama-Rank-V1",
"query": "What is the capital of the United States?",
"documents": [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country."
],
"top_n": 3
}'